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1. INTRODUCTION

In this paper we show that spline functions with free knots can be obtained
as the limit of varisolvent families.1 For a varisolvent family the Remez
algorithm can be employed to obtain best uniform approximations. Thus an
estimate to the best approximation using spline functions with free knots can
be obtained from a sequence of best approximations gotten from an
appropriate sequence of varisolvent families. One class of problems where
this technique could be useful arises in optimal integration theory, [13,
p. 45]. In this paper we deal with the uniform norm, but it should be noted
that this technique would also be useful for other L p norms [14].

The main difficulties in uniform spline approximation with free knots are
caused by the fact that spline functions do not form Haar systems, and
secondly, by the fact that when some of the knots coalesce, degrees offreedom
are lost [1]. The first problem can be circumvented by standard perturbation
techniques [5]. The second problem is more delicate and requires a new real
parameterization which allows the perturbed knots to become possibly
complex. The technique we use to solve this second problem is called extended
varisolvence [1].

2. CHARACTERIZATION OF BEST ApPROXIMATION

We begin the paper by stating a theorem on the characterization of best
approximation in a family which is the limit of Haar systems.

* Supported in part by N. S. F. Grant G. P.-281l1.
t Supported in part by Sonderforschungsbereich 72 at the Institute for Applied Mathe­

matics, University of Bonn.
1 Except for the terms Haar and varisolvent families [1], we use the definitions of

Karlin [5].
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For any function g(x) E qo, 1], let Ii g II = maxxE[O.l] i g(x) [ . By a best
approximation we mean best approximation with respect to this norm. 1n
this section we assume:

Basic Assumptions. Assume we are given Nfunctions Si(X, a) i = J, ... , N,
x E [0, 1], and a E [0, ao], which are continuous on [0, 1] X [0, ao] with the
following two properties:

L For fixed a > 0, the N functions Si(X, a) form a Haar system of
order N.

2. The N functions Si(X, 0) are linearly independent.

Given any continuous function f(x) E qo, 1], for each fixed u > 0, let
Sj*(a) = L~l Ala,/) s;(x, a) be the unique best approximation to f(x) for
x E [0, 1]. See Rice [7, Chapts. 1, 3].

Further let Sea), Sia) stands for functions of the form I.;:l A;Si(X, U}.
The classic Chebyshev theorem states that for a Haar system of order N,

S* is the best approximation tofifl - S* alternates N times; that is, there is
a set of N + 1 points 0 ~ Xl < ... < xN+1 ~ 1 such that il f - S* I: =

if(xl) - S*(Xl )I and f(Xi+1) - S*(Xi+1) = - (1(x;) - S*(x;)) i = 1, ...• N
For such a limit family the N alternations are sufficient. For completeness we
give a short proof of a theorem which can be found in [12J.

THEOREM 1. For each IE C[O, 1], there is a best approximation S(O) so that
f - S(O) alternates N times.

Proof Let {aJ be any sequence of positive numbers converging te zero.
Since III - Sf*(u;)11 ~ Ilfll we have

i! Sj*(a;)11 ~ 2[lfll . (1)

By (1) and property 2 of the limit family it follows by a standard compactness
argument that for some subsequence which we again call a; , a 5(0) exists so
that

Since each f - Sj*(ai) alternates N times it must follow that I - S(O) does
also. Let It be the distance ofI from the limit family. Clearly for each E > {)
there is an io such that i ~ io implies ,\ + E ? III - S(ui)li for some Sea;).
Thus A. ? I!I - S(O)li. Hence S(O) is a best approximation to f with the
desired property.

Every best approximation does not necessarily alternate N times; indeed, a
special case of Theorem 2 of [11] is that for a non-Haar system of order N
there is anfE C [0, 1] with a best approximation S* with the property that
1- S* alternates at most N - 1 times. Splines form a non-Haar system [8].
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3. SPLINE FUNCTIONS AS LIMITS OF HAAR SYSTEMS

We now establish that spline functions with fixed but possibly multiple
knots can be considered limits of Haar systems.

Let q;(x) be positive and of class en-i[O, I], i = 1, ,11. We extend the
qi(X) to be positive and of class en - i in [-1,2], i = 1, ,11. Let

x < t

x ~ t.

Remark 1. IfJn(x, t) for fixed t, as a function of x is a solution of differen­
tial equation LnlfJ = 0, it is of continuity class en- 2, while its 11 - I deriva­
tive has a jump of Ijqn(t) at x = t. These properties determine IfJnCx, t)
uniquely. Conversely (see (3, prob.22 p. 101]) for fixed x, IfJn(x, t) as a
function of t is a solution of the adjoint differential equation L n +1fJ = 0; it is
of continuity class en- 2, while its n - I derivative has a jump of -I jqn(x) at
x = t.

Remark 2. Since the differential equations L n and L n + have essentially
all the same properties, it follows that properties of IfJn(x, t) as a function of x,
are also true as a function of t.

Let

Ga(W, y) = a',)27r= exp ( - 2~2 (II' - y)2)

FaCw, x) = rGaClI', y) IfJnCx, y) dy.
-1

(2)

(3)

Note that for fixed knots we permit only real w; but, in the free knot case
we allow complex w.

Then it reasily follows from properties of the kernel Ga(w, y) (see, e.g.,
[4, pp. 156-157; 9, p. 65]) that:

A. For fixed w, Fill', x) is continuous for x E [0, 1], a E [0, ao] any
ao >0.

(We remark that we extended the q;(x) beyond [0, I], so that (A) and (B)
would apply when w = °or 1).

C. For a > 0, Fa(w, x) is analytic in w, and real for real w.

D. The proof in Karlin [5, pp. 512-513] shows that the kernel Fa(w, x)
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is strictly totally positive in x and extended totally positive in IV. (It should be
noted that when Karlin defines F.(x, i) he integrates @n(x, y) with respect to

x, not y as we have done. However, from Remark 1, it follows that Karlin's
procedure carries over to the case considered in the present paper)

Finally, if we set Si(X, u) = Fa(wi , x), i = 1, ... ,11 -i- k, with

-1 < WI < W 2 < ... < 11'" < °< Wn+l < ... < !t'n+k < 1.

It follows from properties A, B, C, and D, that the Si(X, u) satisfy the basic
assumptions of Section 2. Furthermore, since the most general solution of the
differential equation L,,@ = 0, for x E [0, 1] can be written as

n

r'P = L Air'P(x, H'i)
i=l

(as follows from Karlin [5, Theorem 1. 1, p. 503]), it follows that the above
family is the setting of fixed simple knots treated by Schumaker [8], and Rice
[7, Chap. 10]. Furthermore, if, for example, in the above family we have

Wn+~-l < 11'n+:>: = Wn+~+l = Wn+~+2 = ... = Wn+~Hn < Wn+it+",+l and we set
sn+~+q(x, u) = oqFa(wn+~ , x) q = 1'00" m, we are able to treat fixed multiple
knots, as done recently by Braess [2]. In summary we may apply the results
of Section 2 to obtain a result first given by Schumaker [8] and Jones,
Karlowitz [12] (where the limiting process is used) for simple fixed knots.

THEOREM 2. Consider the set of spline functions with r fixed knots \\',,+1 ,

i = 1'00" r, with multiplicity m, where

,
I nli = k,
i=1

°< H'n+l < ... < W"+r < 1, 111, ~ n - L

Then there is a member s of this set which is a best approximation to.f and.for
which.f - s alternates n + k times.

The set of spline functions with fixed knots is of the form

4. SPLINE FUNCTIONS WITH FREE KNOTS

In Section 3, we showed how splines with fixed knots may be viewed as
limits of strictly totally positive families. In this section we wish to show how
splines with variable knots may be viewed as limits of varisolvent families.
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Before stating our main result, we must introduce some notation:
Let yew, y) be an analytic function of w = U + iT, for each y E [c, d], and

real valued for real w. Denote ojy(w, y)/owi by 0iY. In the following assume

v<r

(4)
r-1 k

L mp + 2 L mp = n
v=l v=r

and consider the subspace:

(5)

\ r-l mp-( k mv-1

= 1~1 ~o SvlJiY(Up, y) + ~r fo [gpi Re Fpi + hpi 1m Fvi];

Spi , gvi , hvi real; (Xvi real but fixed; and Fvi = exp(ifXvi) OjY(wv , y)!.

Clearly with

and (Xvi = 0 for v < r, (5) can be written as

v<r
v;):r

k mv-(

L L Re[(Api)(Fvi)]'
p=1 i=O

In [1] we have proven the following theorem:

(6)

THEOREM 3. Let Q be the subset of the complex plane where
11m wI < 7T((d - c). Then ify(w, y) = exp (wy) for y E [c, d], it is possible to
choose real exvi such that

(7)

is a Haar subspace ofdimension nfor any n whenever the Uj and Wi belong to Q.

For the present paper, we need the following additional theorem:

THEOREM 4. Let Q be the subset of the complex plane where

[ 1m w I < 7Tq/(2(d - c».
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Then if yew, y) = exp(-(w - y)2/q) for y E [c, d], it is possible to choose rea!
(X,i such that

(8)

is a Haar subspace ofdimension nfor any n whenever the Uj and Wj belong to Q.

Proof We use the device in [6, p. 11] of reducing Theorem 4to Theorem 3.
Consider, for example, the terms in (8) corresponding to wv(mv)' Using the
notation of (6) with B,j = Avj exp(in:,j) we have

L Re[B,i7AYCwv , y)]]
j~O

mlJ-l

= exp(_y2/q) L Re [B,i.J j [exp(-w}/q)] y(211'Jq, y)]
j~O

with

thus,

m,,-t

= exp(_y2/q) L Re[Bvkok y(2w y/q, y)]
1.:=0

m-l

BVk = t Byj a) OJ_k exp(-wy
2/q);

j=k

lJ,..mv-l = exp(-w,2/q) B, ..m,-l

(9)

(10)

Thus if a nonzero element of (8) has n zeros, it follows from (9) and Theorem 3
that BYk = O. Further, it then follows from (l1) by induction that By/,: = O.
Thus Theorem 4 is established.

Finally we have

THEOREM 5. The class of spline jimctions of degree n, with k free knots.
may be uniformly approximated by a sequence of varisolvent families each of
maximal degree n + 2k.

Proof We establish two lemmas, from which the theorem immediately
follows:
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LEMMA 1. There exists a constant K not depending on a, such that, if Q"
is the subset of the complex plane where I 1m W I < Ka, and if yew, y) =
F,,(w, y) of(3), y E [0, I], it is possible to choose real !Xvj such that

is a Haar subspace ofdimension nfor all n whenever the aj and Wj belong to Q" .

Proof The lemma follows from Theorem 4, by again using the proof in
Karlin [5, pp. 512-513], just as was done in D in Section 3.

LEMMA 2. Let

- I f [ cell') k-" g; ]
F,,(aj, Cj , ej, gj ,y) = 2------; "( ) A( ) + I --'- FaCw, y) dw,

'TTl r TI,- w - Wi Ii' j~I ]V - ej
~l (1~

where -1 < WI < W 2 < ... < w" < °

C(w) = C1WP+n-I + ... + Cp +n •

The numbers aj , Cj , gj , ej are all real. The roots ofn~~1 (w - Wi) A(w) are in
the interior of the simple closed rectifiable contour r (which is in Q,,) and are
different from the k - p distinct numbers e1 , ••• , ek-p which also are in the
interior of r. Further, each root z of A(w) satisfy real Z E (0, I) and
I1m Z I < Ka with K the constant of Lemma 1. Then

1. F,,(aj, Cj , ej , 0, y) is varisolvent of degree n + k + p.

2. If all the roots ofA(z) are real and are ofmultiplicity less than n - 1,

then as at 0, F,,(aj , Cj , ej , 0, y) uniformly approaches a spline function.
Conversely, any spline fil11ction may be obtained ;'1 this manner.

Proof Statement I follows from Theorem I of [I], applied to y = F,,(I-I', y),
with the properties established for it by Lemma 1 above.

Statement 2 follows from an application of the residue Theorem to (12)
which yields,

n+"
F,,(aj, Cj, ej , 0, y) = I BiF,,(Wi, y)

i~I

(13)

where if a root w'" occurs j times, replace F,,(wmH , y) by oqF" (w", ,y)
q = 1,...,j - I in the sum in (13).

Then statement 2 follows from property B of Section 3.



SPLINES WITH FREE KNOTS

The class of spline functions with free knots that results IS of the form

, n 't mi-1

\I G,.q)(x. \1';) + L L bJI/P(x. H',,+i);
{i~1 i~1 j~O

r

Lilli = k, -1 < \1'1 < ... < 11'" < 0 are fixed;
i~1

n1i, Gi, bii , \l'Mi are free real parameters \.

In closing we would like to thank Dr. Braess who pointed out Ref. ]:2

after we had written the first draft of this paper.
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